36,857 research outputs found

    Semantic web service architecture for simulation model reuse

    Get PDF
    COTS simulation packages (CSPs) have proved popular in an industrial setting with a number of software vendors. In contrast, options for re-using existing models seem more limited. Re-use of simulation component models by collaborating organizations is restricted by the same semantic issues however that restrict the inter-organization use of web services. The current representations of web components are predominantly syntactic in nature lacking the fundamental semantic underpinning required to support discovery on the emerging semantic web. Semantic models, in the form of ontology, utilized by web service discovery and deployment architecture provide one approach to support simulation model reuse. Semantic interoperation is achieved through the use of simulation component ontology to identify required components at varying levels of granularity (including both abstract and specialized components). Selected simulation components are loaded into a CSP, modified according to the requirements of the new model and executed. The paper presents the development of ontology, connector software and web service discovery architecture in order to understand how such ontology are created, maintained and subsequently used for simulation model reuse. The ontology is extracted from health service simulation - comprising hospitals and the National Blood Service. The ontology engineering framework and discovery architecture provide a novel approach to inter- organization simulation, uncovering domain semantics and adopting a less intrusive interface between participants. Although specific to CSPs the work has wider implications for the simulation community

    Enhancing the Supply Chain Performance by Integrating Simulated and Physical Agents into Organizational Information Systems

    Get PDF
    As the business environment gets more complicated, organizations must be able to respond to the business changes and adjust themselves quickly to gain their competitive advantages. This study proposes an integrated agent system, called SPA, which coordinates simulated and physical agents to provide an efficient way for organizations to meet the challenges in managing supply chains. In the integrated framework, physical agents coordinate with inter-organizations\' physical agents to form workable business processes and detect the variations occurring in the outside world, whereas simulated agents model and analyze the what-if scenarios to support physical agents in making decisions. This study uses a supply chain that produces digital still cameras as an example to demonstrate how the SPA works. In this example, individual information systems of the involved companies equip with the SPA and the entire supply chain is modeled as a hierarchical object oriented Petri nets. The SPA here applies the modified AGNES data clustering technique and the moving average approach to help each firm generalize customers\' past demand patterns and forecast their future demands. The amplitude of forecasting errors caused by bullwhip effects is used as a metric to evaluate the degree that the SPA affects the supply chain performance. The experimental results show that the SPA benefits the entire supply chain by reducing the bullwhip effects and forecasting errors in a dynamic environment.Supply Chain Performance Enhancement; Bullwhip Effects; Simulated Agents; Physical Agents; Dynamic Customer Demand Pattern Discovery

    Simulation of the Long-Term Effects of Decentralized and Adaptive Investments in Cross-Agency Interoperable and Standard IT Systems

    Get PDF
    Governments have come under increasing pressure to promote horizontal flows of information across agencies, but investment in cross-agency interoperable and standard systems have been minimally made since it seems to require government agencies to give up the autonomies in managing own systems and its outcomes may be subject to many external and interaction risks. By producing an agent-based model using 'Blanche' software, this study provides policy-makers with a simulation-based demonstration illustrating how government agencies can autonomously and interactively build, standardize, and operate interoperable IT systems in a decentralized environment. This simulation designs an illustrative body of 20 federal agencies and their missions. A multiplicative production function is adopted to model the interdependent effects of heterogeneous systems on joint mission capabilities, and six social network drivers (similarity, reciprocity, centrality, mission priority, interdependencies, and transitivity) are assumed to jointly determine inter-agency system utilization. This exercise simulates five policy alternatives derived from joint implementation of three policy levers (IT investment portfolio, standardization, and inter-agency operation). The simulation results show that modest investments in standard systems improve interoperability remarkably, but that a wide range of untargeted interoperability with lagging operational capabilities improves mission capability less remarkably. Nonetheless, exploratory modeling against the varying parameters for technology, interdependency, and social capital demonstrates that the wide range of untargeted interoperability responds better to uncertain future states and hence reduces the variances of joint mission capabilities. In sum, decentralized and adaptive investments in interoperable and standard systems can enhance joint mission capabilities substantially and robustly without requiring radical changes toward centralized IT management.Public IT Investment, Interoperability, Standardization, Social Network, Agent-Based Modeling, Exploratory Modeling
    corecore